Simulations of transport in one dimension

author

  • Alper Korkmaz Department of Mathematics, C¸ ankırı Karatekin University, C¸ ankırı, Turkey
Abstract:

Advection-dispersion equation is solved in numerically by using combinations of differential quadrature method (DQM) and various time integration techniques covering some explicit or implicit single and multi step methods. Two different initial boundary value problems modeling conservative and nonconservative transports of some substance represented by initial data are chosen as test problems. In the first case, pure advection conservative model problem is studied. The second problem models motion of nonconservative substance and simulates fade out of it as time proceeds. The errors between analytical and numerical results are measured by discrete maximum norm. Comparison with some earlier works indicates that the proposed algorithms generate more accurate and valid results for some discretization parameters.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Lattice gas simulations of dynamical geometry in one dimension.

We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evo...

full text

Finite element radiation transport in one dimension (U)

A new physics package solves radiation transport equations in one space dimension, multiple energy groups and directions. A discontinuous finite element method discretizes radiation intensity with respect to space and angle, and a continuous finite element method discretizes electron temperature in space. A splitting method solves the resulting linear equations. This is a one-dimensional analog...

full text

Energy band correction due to one dimension tension in phosphorene

Among graphene-like family, phosphorene is a typical semiconducting layered material, which can also be a superconductor in low temperature. Applying pressure or tension on phosphorene lattice results in changing the hopping terms, which change the energy bands of the material. In this research we use the tight-binding Hamiltonian, including relevant hopping terms, to calculate energy bands of ...

full text

Computational simulations of nanoparticle transport in a three-dimensional capillary network

Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...

full text

Electrons in one dimension

In this article, we present a summary of the current status of the study of the transport of electrons confined to one dimension in very low disorder GaAs-AlGaAs heterostructures. By means of suitably located gates and application of a voltage to 'electrostatically squeeze' the electronic wave functions, it is possible to produce a controllable size quantization and a transition from two-dimens...

full text

Chemistry in one dimension.

We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting via the Coulomb operator |x|(-1). Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order Møller-Plesset perturbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatom...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 3

pages  189- 200

publication date 2017-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023